
SetaPDF-Encryptor API - Manual and Reference

SetaPDF-
Encryptor API
Manual and Reference

Version 1.6.10, 2010-03-25 16:55:19

Setasign - Jan Slabon
Max-Planck-Weg 7
38350 Helmstedt
Germany

http://www.setasign.de
support@setasign.de

© Setasign 2013 Page 1 of 40

http://www.setasign.de
mailto:support@setasign.de
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

Table of contents

Introduction

System Requirements

Installation

 Ioncube

 Zend

Standard and Certificate-based encryption

Examples of Use

Constants / Configuration

Caching

SetaPDF

 SetaPDF::isError()

SetaPDF_Error

SetaPDF_Parser

 SetaPDF_Parser::cacheDir()

 SetaPDF_Parser::cacheFlags()

 SetaPDF_Parser::cacheMkdirMode()

 SetaPDF_Parser::cacheNoOfObjectsPerInstance()

 SetaPDF_Parser::cacheHashFunction()

SetaPDF_Encryptor

 SetaPDF_Encryptor::factory()

 SetaPDF_Encryptor::setTmpDirectory()

 SetaPDF_Encryptor::createNewTmpFileName()

 SetaPDF_Encryptor::cleanTmpDirectory()

 SetaPDF_Encryptor::setUseCache()

 SetaPDF_Encryptor::encrypt()

 SetaPDF_Encryptor::updateCache()

Caching (DEPRECATED)

..3

...4

..5

..6

...7

...8

..9

..12

..17

..20

...21

..22

..23

...24

...25

..26

..27

...28

...29

..30

..31

...32

..33

...34

...35

...39

..40

© Setasign 2013 Page 2 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Introduction

The SetaPDF-Encryptor API is a collection of PHP classes that allows PHP developers to encrypt PDF
documents and to grant user rights to them.

© Setasign 2013 Page 3 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - System Requirements

All SetaPDF APIs are written in pure PHP and does not need any other libraries installed except a PHP
environment of a version later than 4.3 (until 2010) and an installed Zend Optimizer or installed Ioncube
loader.

All releases since 2010 require PHP 5.

As shown in the next paragraph, it is also recommended to install MCrypt.

The SetaPDF APIs have their own integrated RC4 function for encrypting and decrypting the contents of a
PDF file. For performance reasons, the APIs initially tries to use the MCrypt library, if that is installed. If
MCrypt is available, the APIs require the arcfour algorithm.

The use of MCrypt increases the performance by up to 90% if encryption or decryption is needed.

If MCrypt is not available, the APIs automatically fall back to their internal RC4 function.

Depending on the file size of the PDF files to be processed, some adjustment to the php.ini directives
max_execution_time and memory_limit are recommended.

For performance optimization, all SetaPDF APIs provides a caching system that prevents the unnecessary
reparsing of PDF files.

To use the AES algorithm for encryption MCrypt is required!
Furthermore for AES encryption with a 256-bit key the API needs the hash()-function which is available
since PHP 5.1.2 or through PECL.

© Setasign 2013 Page 4 of 40

http://pecl.php.net/package/hash
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Installation

The SetaPDF API collection includes a directory structure which should be kept, because of the internal
usage of pathes.

Files and directories

All packages includes a root directory called SetaPDF. In this directory you'll find the desired API
directories. The directory structure for all current available SetaPDF APIs looks like this:

If you transfer the files via FTP
make sure you use binary mode.

For each API or API combination you'll find demo files in the /Demo directory in nearly the same structure:

To use one of the SetaPDF APIs in your applications you have to add the SetaPDF-directory to your
include_path:

set_include_path(get_include_path() . PATH_SEPARATOR . 'PathTo/SetaPDF/');

Now you can simply include the SetaPDF-Encryptor API with the following line:

require_once("Encryptor/SetaPDF_Encryptor.php");

© Setasign 2013 Page 5 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Ioncube encoded package

If you own a package of the API, which is encoded with Ioncube you need a loader installed on your server.
There are 2 ways to get ioncube encoded files to run:

1. Install the loader in your php.ini
2. Load the loader at runtime

For details how to install ioncube or simply to check if it is installed, just download the loaders from
http://www.ioncube.com/loaders.php, extract its content to /SetaPDF/ioncube and open the file
ioncube-loader-helper.php in the directory /SetaPDF/ioncube in your webbrowser and follow the
instructions. For further instructions go to http://www.ioncube.com/

Licensing with Ioncube

Each ioncubed package needs a valid license to run. The provided licensefiles for the SetaPDF API are
named: .htSetaPDF-<API-NAME>.icl

You don't have to rename that file, because the package search for exactly that named file in one of its
upper directories. All APIs first searches for this file in the their initial directory. F.g. The
SetaPDF-Encryptor API searches first in /SetaPDF/Encryptor/. If the licensefile is not found it goes one
directory upwards: /SetaPDF/ and so on...

Please notice that the filename is prefixed with .ht. Some systems hide such prefixed files automatically.

© Setasign 2013 Page 6 of 40

http://www.ioncube.com/loaders.php
http://www.ioncube.com/
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Zend encoded package

If you own a package, which is encoded with the Zend Safguard Suite you have to install the Zend
Optimizer or Zend Guard Loader (as of PHP 5.3) - both are FREE of charge! For more information please
go to http://www.zend.com/en/products/guard/runtime-decoders.

Licensing with Zend

Also the zend encoded packages need valid licenses to run. The provided licensefiles for the SetaPDF API
are named:
.htSetaPDF-<API-NAME>.zl

Please notice that the filename is also prefixed with .ht. Some systems hide such prefixed files
automatically.

For zend encoded packages the name of the license file can be changed and has no real meaning. You
can load the licensefile dynamically at runtime in your php script before you use the API:

$licensePath = realpath('../path/to/.htSetaPDF-

.zl');

zend_loader_install_license($licensePath);

...or change or add the license path to the following directive in your php.ini:

Zended packages are only available for development- and serverlicenses.

© Setasign 2013 Page 7 of 40

http://www.zend.com/en/products/guard/runtime-decoders
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

Standard and Certificate-based encryption

Until version 1.6 of the SetaPDF-Encryptor API it was only possible to use the standard encryption with an
owner- and userpassword.

As of the version 1.6 the API also supports certificate-based encryption. Certificate-based encryption lets
you encrypt a document for specific recipients by means of public key technology. Various recipients can
be given different permissions for the document.

© Setasign 2013 Page 8 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Examples of Use

40-bit Encryption

This example encrypts a document with 40-bit, allowing the user to print the document and display it as an
inline document. The user needs a user password to open the PDF file.

/**

 * set the includepath for SetaPDF APIs

 * You have to point to the root directory "SetaPDF"

 */

set_include_path(get_include_path() . PATH_SEPARATOR .

realpath(dirname(__FILE__).'/../../'));

// require the SetaPDF_Encryptor-class

require_once("Encryptor/SetaPDF_Encryptor.php");

// Create a new instance of SetaPDF_Encryptor and define the original document

$encryptor =& SetaPDF_Encryptor::factory("docs/License_Agreement_SetaPDF.pdf");

// grant the right "print"

$permissions = array(

	"print"

);

// Let's encrypt with 40bit and send it to the client!

$err = $encryptor->encrypt("newpdf.pdf","myownerpw", "myuserpw", $permissions,

SETAPDF_ENC_RC4_40, "I");

// Errorhandling

if (SetaPDF::isError($err)) {

 echo "We've got an error: ";

 print_r($err);

 die();

}

128bit Encryption

This example encrypts a document with 128bit, allowing the user to print the document in high quality and
to extract/copy text and images. The user does not require a password to open the document. The
encrypted file will be offered to the client for downloading. In addition, the document will also be streamed.

/**

 * set the includepath for SetaPDF APIs

 * You have to point to the root directory "SetaPDF"

 */

set_include_path(get_include_path() . PATH_SEPARATOR .

realpath(dirname(__FILE__).'/../../'));

// require the SetaPDF_Encryptor-class

© Setasign 2013 Page 9 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

require_once("Encryptor/SetaPDF_Encryptor.php");

// Create a new instance of SetaPDF_Encryptor and define the original document

$encryptor =& SetaPDF_Encryptor::factory("docs/License_Agreement_SetaPDF.pdf");

/**

* grant rights for printing the document

* in high quality and allow the user to copy/extract

* text and graphics from the PDF.

*/

$permissions = array(

 "print",

 "copy",

 "degraded-print"

);

// Let's encrypt with 128bit without an userpassword and send it

// with an download-dialog and in streaming-mode to the client!

$encryptor->encrypt("newpdf.pdf","myownerpw", "", $permissions,

SETAPDF_ENC_RC4_128, "D", true);

128-bit AES Encryption + Caching function

This example uses the caching function of the API.

/**

 * set the includepath for SetaPDF APIs

 * You have to point to the root directory "SetaPDF"

 */

set_include_path(get_include_path() . PATH_SEPARATOR .

realpath(dirname(__FILE__).'/../../'));

// require the SetaPDF_Encryptor-class

require_once("Encryptor/SetaPDF_Encryptor.php");

// define the cache-path

define('SetaPDF_ENCRYPTOR_CACHEPATH', dirname(__FILE__).'/cache/');

// Create a new instance of SetaPDF_Encryptor and define the original document

$encryptor =& SetaPDF_Encryptor::factory("docs/License_Agreement_SetaPDF.pdf");

// enable Caching-System

$encryptor->setUseCache(true);

/**

* grant rights for printing the

* document in low quality

*/

$permissions = array(

 "print"

);

// Let's encrypt with AES 128-bit without an userpassword

© Setasign 2013 Page 10 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

// and send it to the client!

$encryptor->encrypt("newpdf.pdf","myownerpw", "", $permissions,

SETAPDF_ENC_AES_128, "I");

© Setasign 2013 Page 11 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Constants / Configuration

The API needs some constants which are hard coded into the API or have to be defined by you. There is
also a constant that requires definition prior to first use.

Also you can define global variables which affects the behaviour of specific tasks.

Global Configuration Variables

$GLOBALS['SETAPDF_PARSE_INVALID_FILES'] (boolean)

(DEPRECATED) If this global variable is set the pdf parser tries to read/repair invalid PDF documents. This
setting could affect the processtime on huge files very much.

This variable isn't used by the parser as of version 1.3 (all current version of the SetaPDF APIs)

$GLOBALS['SETAPDF_SEARCH_FOR_XREF_OFFSET'] (integer)

With this global variable you can adjust the offset position from which the pdf parser should search for the
pointer to the xref table. If not defined the default value of 1500 is used.

The pdf specification says it has to be in the last 1024 bytes of a file. But sometimes there are errorious
document in the wild that have some garbage at the end so we need the possibility to do a kind of
finetuning for them.

Predefined Version Constants

The following constants defines the versions of specific files of the SetaPDF core:

SETAPDF_CORE_VERSION (string)1.3

Version of the abstract SetaPDF class. Defined in /SetaPDF/SetaPDF.php

SETAPDF_PARSER_VERSION (string)1.3

Version of the SetaPDF_Parser class. Defined in /SetaPDF/SetaPDF_parser.php

SETAPDF_PDF_CONTEXT_VERSION (string)1.3

Version of the pdf_context class. Defined in /SetaPDF/pdf_context.php

SETAPDF_WRAPPER_FUNCTIONS_VERSION (string)1.2.1

Version of the wrapper functions file. Defined in /SetaPDF/wrapper_functions.php

Constants to define

SetaPDF_ENCRYPTOR_CACHEPATH (string)

The constant SetaPDF_ENCRYPTOR_CACHEPATH has to contain a path to which the PHP process can

© Setasign 2013 Page 12 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

write and read. This constant must be set as soon as the caching system is activated. Otherwise the
caching system will not be used.

As of version 1.5 a new global caching function exists and the API own functionality will be removed in
coming version.

Predefined Constants

SETAPDF_ENC_RC4_40 (integer)0

Standard encryption with 40-bits.

SETAPDF_ENC_RC4_128 (integer)1

Standard encryption with 128-bits.

SETAPDF_ENC_AES_128 (integer)2

AES (Advanced Encryption Standard) encryption with 128-bits.

SETAPDF_ENC_AES_256 (integer)3

AES (Advanced Encryption Standard) encryption with 256-bits.

Predefined Constants for Errorhandling

Possible errorcodes for the SetaPDF main class starts at 1 and ends at 99.

E_SETAPDF_CANNOT_OPEN_FILE (integer)1

cannot open XXXX !

E_SETAPDF_UNABLE_TO_POINT_TO_XREF_TABLE (integer)2

Unable to find pointer to xref table

E_SETAPDF_UNABLE_TO_FIND_XREF (integer)3

Unable to find xref table - Maybe a Problem with 'auto_detect_line_endings'

E_SETAPDF_UNEXPECTED_HEADER_IN_XREF_TABLE (integer)4

Unexpected header in xref table

E_SETAPDF_UNEXPECTED_DATA_IN_XREF_TABLE (integer)5

Unexpected data in xref table

E_SETAPDF_FILE_IS_ENCRYPTED (integer)6

File is encrypted!

© Setasign 2013 Page 13 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

E_SETAPDF_WRONG_TYPE (integer)7

Wrong Type of Element

E_SETAPDF_UNABLE_TO_FIND_OBJECT (integer)8

Unable to find object at expected location

E_SETAPDF_ENC_UNSUPPORTED_FILTER (integer)9

E_SETAPDF_ENC_UNSUPPORTED_ALGO (integer)10

E_SETAPDF_ENC_UNSUPPORTED_REVISION (integer)11

E_SETAPDF_ENC_NO_RIGHTS_FOR_SPECIFIC_ACTION (integer)12

E_SETAPDF_ENC_WRONG_OWNER_PW (integer)13

E_SETAPDF_CANNOT_COPY_FILE (integer)14

Cannot copy file XXXX to YYYY

E_SETAPDF_HEADER_ALREADY_SEND (integer)15

Some data has already been output to browser, can't send PDF file

E_SETAPDF_UNABLE_TO_FIND_TRAILER (integer)16

Trailer keyword not found after xref table

E_SETAPDF_UNSUPPORTED_FILTER (integer)17

An unsupported compression filter is required.

E_SETAPDF_ZLIB_REQUIRED (integer)18

To handle /FlateDecode filter, php with zlib support is needed.

E_SETAPDF_DECOMPRESSION_ERROR (integer)19

Error while decompressing stream.

E_SETAPDF_UNABLE_TO_CREATE_CACHE_DIR (integer)20

Unable to create directories in cache directory.

API Related Predefined Constants for Errorhandling

Possible errorcodes for the SetaPDF-Encryptor API starts at 300 and ends at 399.

E_SETAPDF_ENC_ERR_PERM (integer)300

Error description: Incorrect permission

© Setasign 2013 Page 14 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

E_SETAPDF_ENC_ERR_PERM_40BIT (integer)301

Error description: Incorrect permission for 40bit

E_SETAPDF_ENC_ERR_CACHEUPDATE_NOT_POSSIBLE (integer)302

Error description: A Cache Update is only possible when $this->usecache is true.

E_SETAPDF_ENC_ERR_MCRYPT_NOT_AVAILABLE (integer)303

AES encryption requires mcrypt to be installed.

E_SETAPDF_ENC_ERR_MCRYPT_RIJNDAEL_128_NOT_AVAILABLE (integer)304

Needed cipher (RIJNDAEL_128) not available.

E_SETAPDF_ENC_TMPDIR_DOES_NOT_EXISTS (integer)306

Fallback temporary directory _tmp/ does not exists.

E_SETAPDF_ENC_DIR_DOES_NOT_EXISTS (integer)307

Directory "%s" does not exists.

E_SETAPDF_ENC_OPENSSL_ERROR (integer)308

An OpenSSL error occurs + all results from openssl_error_string()

E_SETAPDF_ENC_OPENSSL_BOUNDARY_ID_NOT_FOUND (integer)309

Cannot find boundary id in smime message.

E_SETAPDF_ENC_OPENSSL_ENC_EXTRACTION (integer)310

Error while extracting the encrypted content of the smime message.

E_SETAPDF_ENC_PKSEC_NOT_POSSIBLE (integer)311

Public-Key Security is not supported for RC4 40bit encryption.

E_SETAPDF_ENC_OPENSSL_NOT_AVAILABLE (integer)312

This module requires php compiled with openssl.

Constans for Cache Mechanism

The following constants are used to control the behaviour of the caching mechanism of the pdf parser.

SETAPDF_P_CACHE_NO (integer)0x00

Don't read and write cache.

SETAPDF_P_CACHE_READ_XREF (integer)0x01

© Setasign 2013 Page 15 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

Try to read the cached xref table.

SETAPDF_P_CACHE_WRITE_XREF (integer)0x02

Write the xref table to cache.

SETAPDF_P_CACHE_XREF (integer)0x01 | 0x02

Try to read and write the xref table.

SETAPDF_P_CACHE_READ_OBJECTS (integer)0x04

Try to read cached objects.

SETAPDF_P_CACHE_WRITE_OBJECTS (integer)0x08

Write read objects to cache.

SETAPDF_P_CACHE_OBJECTS (integer)0x04 | 0x08

Try to read and write objects to cache.

SETAPDF_P_CACHE_ALL (integer)0x01 | 0x02 | 0x04 | 0x08

Read and write objects and xref-tables.

© Setasign 2013 Page 16 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor API - Caching

PDF parsing and handling can be an expensive task in view of needed cpu-power.

To avoid doing default tasks for a single document a few times the parser class offers a caching
mechanism to reduce the overhead and avoid reparsing of PDF documents a few times.

The parser simply saves serialized data in the filesystem and load them back if needed. This data can be
used with ANY SetaPDF API. So if for example the SetaPDF-Merger API creates the cache data, the
SetaPDF-Stamper API can benefit from them.

As of this, the handling of the cache mechanism is done through static methods of the SetaPDF_Parser
class. Calls to this methods will change static variables in their method contexts, so that changes doesn't
depend on the object instance but applies to all instances of a parser object. (We used static variable
because of compatibility to PHP4)

There are 2 parts that the parser can cache:

1. The Xref Table

This is a kind of table of contents of a PDF document. It includes information about all objects in a
document and their byte-offset positions in the document. Often documents include several hundreds or
thousands of entries in that table. Further more a PDF document can include more than one xref table,
which relys on several updates of a document (incremental updates). But at least all tables have to be
processed to get the final state of the document... By caching that data, the parser don't have to reparse the
xref table out of the document.

2. Objects

Each entry in the above described xref table points to an object representing specific data, like Images,
Fonts, Pages,... If the parser should read such an object it have to go to the desired byte-offset position in
the document, known from the xref-table, and have to parse the object token-wise. This process needs
several string comparsions and also runs recursive until the object is totally read.

The parser can cache the read objects and use the cached versions at the next situation when it is
needed. No byte-position change or parsing of any string is done but simply unserializing the data from the
cached data.

Usage

As already written the handling of the cache functionallity is done by static methods of the SetaPDF_Parser
class.

You can use the static method right after including a desired API like the SetaPDF-Merger API:

require_once('Merger/SetaPDF_Merger.php');

// at this point you can access the SetaPDF_Parser class

© Setasign 2013 Page 17 of 40

https://www.setasign.de/products/pdf-php-solutions/setapdf-merger/
https://www.setasign.de/products/pdf-php-solutions/setapdf-stamper/
http://de.php.net/manual/en/language.variables.scope.php#language.variables.scope.static
https://www.setasign.de/products/pdf-php-solutions/setapdf-merger/
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

First of all you have to tell the API where you would like to save the cached data. You have to use the
SetaPDF_Parser::cacheDir()-method for this:

SetaPDF_Parser::cacheDir(realpath('../../path/for/cached/data/'));

Now you were able to activate the caching by calling the SetaPDF_Parser::cacheFlags()-method with
special flags. The flags are predefined in Constants:

// Will read and write all data (xref table and objects) from/to cache.

SetaPDF_Parser::cacheFlags(SETAPDF_P_CACHE_ALL);

// Will just read and write the xref table from/to cache.

SetaPDF_Parser::cacheFlags(SETAPDF_P_CACHE_XREF);

// Will just read and write objects from/to cache.

SetaPDF_Parser::cacheFlags(SETAPDF_P_CACHE_OBJECTS);

After this the cache is active for all instances of any SetaPDF API.

Furthermore you can do some fintuning:

Build the cache slowly

If you want the cache to be build piecemeal you can use the
SetaPDF_Parser::cacheNoOfObjectsPerInstance()-method to define a maximum of objects to cache in a
single script instance. With this method you can avoid performance peaks because the cache writing
process, for sure, also needs cpu time.

// cache a maximum of 100 objects per script instance

SetaPDF_Parser::cacheNoOfObjectsPerInstance(100);

How is a file identified and how you can control it

By default the cache mechanism uses the md5_file()-function to get an unique file identifier of the
document. This file identifier is used as the directoryname in the cache output directory. To give you the
possibility to use another method for the fileidentification you can define your own function/method, which
will be called when a fileidentifier is needed, with the SetaPDF_Parser::cacheHashFunction()-method.

An Example: You already have your documents arranged in a database. This data have already unique ids
related to the documents local path in your filesystem. As the ids are already known and are unique you
should use the ids as a fileidentifier to avoid creating a hash with md5_file().

Furthermore it is easier for you to manage the cache data, as you can for example delete the cache data if
the data in the database table were deleted or changed.

The passed argument is of the pseudo-type callback and will be used with call_user_func()-function.

function mapFilenameToId($filename) {

 // just pseudo code

 $db = YourDbClass::getInstance();

© Setasign 2013 Page 18 of 40

https://www.setasign.de/support/manuals/setapdf-encryptor/constants/#cache-constants
http://www.php.net/md5_file
http://www.php.net/md5_file
http://de2.php.net/manual/en/language.pseudo-types.php#language.types.callback
http://de2.php.net/manual/en/function.call-user-func.php
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

 $id = $db->getOne("SELECT id FROM documents WHERE filename =

".$db->quote($filename));

 return $id;

}

SetaPDF_Parser::cacheHashFunction('mapFilenameToId');

© Setasign 2013 Page 19 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF - Class

This manual is out-of-date and covers version 1.x.
For version 2.x follow this link.

This class is the base class for nearly all SetaPDF APIs. It offers some public static helper methods.

Class Overview

SetaPDF

Child Classes

➧ SetaPDF_Encryptor

Methods

➧ SetaPDF::isError()

© Setasign 2013 Page 20 of 40

https://www.setasign.de/support/manuals/setapdf-stamper/
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF::isError()

Description

SetaPDF {

boolean isError (mixed $obj)

}

Determines if a variable is a SetaPDF_Error object.

Parameters

$obj

Variable to check

Return Values

True if $obj is a SetaPDF_Error object

© Setasign 2013 Page 21 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Error - Class

This manual is out-of-date and covers version 1.x.

This class represents an error object thrown by a SetaPDF API. You can get more information about the
error by checking the following properties $obj->message and $obj->code.

You can add your own error handling by defining your own class named SetaPDF_Error before you include
any SetaPDF-File. The original class looks like this:

class SetaPDF_Error {

 var $message;

 var $code;

 function SetaPDF_Error($message = 'unknown error', $code = null,

 $mode = null, $options = null, $userinfo = null) {

 $this->message = $message;

 $this->code = $code;

 }

}

© Setasign 2013 Page 22 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Parser - Class

This manual is out-of-date and covers version 1.x.

The SetaPDF_Parser class is the base class for all indvidual SetaPDF parser classes. It is for example
responsible for reading the xref table or objects of a document.

The SetaPDF_Parser class is an abstract class and just offers some static methods which let you control
the cache functionality.

Class Overview

SetaPDF_Parser

Methods

➧ SetaPDF_Parser::cacheDir()
➧ SetaPDF_Parser::cacheFlags()
➧ SetaPDF_Parser::cacheMkdirMode()
➧ SetaPDF_Parser::cacheNoOfObjectsPerInstance()
➧ SetaPDF_Parser::cacheHashFunction()

© Setasign 2013 Page 23 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Parser::cacheDir()

Description

SetaPDF_Parser {

mixed cacheDir ([string $dir=null])

}

Sets the directory for cache data.

This method should be called static.

Parameters

$dir

Path to the directory where to write the cache data. If null the directory will not be changed.

Return Values

The actual path.

© Setasign 2013 Page 24 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Parser::cacheFlags()

Description

SetaPDF_Parser {

mixed cacheFlags ([string $flags=null])

}

Sets the flags how the parser should handle read and write processes of objects or xref-tables.

This method should be called static.

You can use this flags to do fine tuning of the caching mechanism. The flags can be combined using a
bitwise AND (|) operation.

If any flag is set, except SETAPDF_P_CACHE_NO, a valid writeable path should be set with
SetaPDF_Parser::cacheDir().

Parameters

$flags

The parameter defines the caching behaviour of the API. Available values are:

➧ SETAPDF_P_CACHE_NO - Don't read and write cache.
➧ SETAPDF_P_CACHE_READ_XREF - Try to read the cached xref table.
➧ SETAPDF_P_CACHE_WRITE_XREF - Write the xref table to cache.
➧ SETAPDF_P_CACHE_XREF - Try to read and write the xref table.
➧ SETAPDF_P_CACHE_READ_OBJECTS - Try to read cached objects.
➧ SETAPDF_P_CACHE_WRITE_OBJECTS - Write read objects to cache.
➧ SETAPDF_P_CACHE_OBJECTS - Try to read and write objects to cache.
➧ SETAPDF_P_CACHE_ALL - Read and write objects and xref-tables.

(see also Constants / Configurations)Return Values

The actual value.

© Setasign 2013 Page 25 of 40

https://www.setasign.de/support/manuals/setapdf-general/setapdf-parser/cache-dir/
https://www.setasign.de/support/manuals/setapdf-general/constants/
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Parser::cacheMkdirMode()

Description

SetaPDF_Parser {

mixed cacheMkdirMode ([integer $mode=null])

}

As the caching mechanism creates directories for each pdf document the API internally uses mkdir to
create the directory. With this method you can define if and which parameter should be passed as the
$mode parameter of the mkdir-function.

This method should be called static.

Parameters

$mode

The file mode.

The parameter consists of three octal number components specifying access restrictions for the
owner, the user group in which the owner is in, and to everybody else in this order. More
informations about the mode-parameter can be found here.

Return Values

The actual value.

© Setasign 2013 Page 26 of 40

http://www.php.net/mkdir
http://www.php.net/chmod
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Parser::cacheNoOfObjectsPerInstance()

Description

SetaPDF_Parser {

mixed cacheNoOfObjectsPerInstance ([integer $no=null])

}

For sure a caching process needs more process power as the cached data have to be written to the file
system. Often a PDF document is build with more houndres or thousands of objects which can increase the
process time to a bad value.

With this method you can define how many maximum objects should be cached per script instance. So you
can chop the cache creation over several script executions.

This method should be called static.

If you set the $no-parameter, for example, to 100, the parser will cache 100 objects per script instance
maximum, until all objects are cached.

By default the parser will cache ALL objects.

Parameters

$no

The maximum number of objects to cache per instance.

Return Values

The actual value.

© Setasign 2013 Page 27 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Parser::cacheHashFunction()

Description

SetaPDF_Parser {

mixed cacheHashFunction ([callback $hashFunction=null])

}

To identify a pdf document the API uses the md5_file()-function by default.

If you want to create your own identification process or if you already know a hash or unique property of the
document you can use this method to define an own function/method which will be called when the parser
needs the hash.

This hash/value will be used as the directory name in the cache directory (see SetaPDF_Parser::cacheDir()
).

The given value will be used as the function parameter of a call_user_func()-call.

This method should be called static.

Parameters

$hashFunction

The function to be called.
(See also informations about the callback type.)

Return Values

The actual value.

© Setasign 2013 Page 28 of 40

http://www.php.net/md5_file
https://www.setasign.de/support/manuals/setapdf-general/setapdf-parser/cache-dir/
http://www.php.net/call_user_func
http://de2.php.net/manual/en/language.pseudo-types.php#language.types.callback
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF-Encryptor - Main class

This is the main class of the SetaPDF-Encryptor API.

Class Overview

SetaPDF
SetaPDF_Encryptor

Methods

➧ SetaPDF_Encryptor::factory()
➧ SetaPDF_Encryptor::setTmpDirectory()
➧ SetaPDF_Encryptor::createNewTmpFileName()
➧ SetaPDF_Encryptor::cleanTmpDirectory()
➧ SetaPDF_Encryptor::setUseCache()
➧ SetaPDF_Encryptor::encrypt()
➧ SetaPDF_Encryptor::updateCache()

Inherited Methods

Class: SetaPDF

➧ SetaPDF::isError()

© Setasign 2013 Page 29 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::factory()

Description

SetaPDF_Encryptor extends SetaPDF {

mixed factory (string $sourcefile[, string $tmpDirectory=null])

}

This method has to be called static and will return an instance of the SetaPDF_Encryptor class or an
SetaPDF_Error object.

Parameters

$sourcefile

A string that defines the path (relative or absolute) to the original document. Only local paths are
allowed.

$tmpDirectory

A path for temporary files. If not or null is passed the default fallback directory
SetaPDF/Encryptor/_tmp/ is used.

This parameter only affects the usage if you're going to use Public Key Security.

Return Values

In case of success you get a new instance of the SetaPDF_Encryptor class.

On failure an SetaPDF_Error object will be returned. It is strongly recommened to check this return value
with SetaPDF::isError().

Version

The $tmpDirectory-parameter is available since version 1.6

© Setasign 2013 Page 30 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::setTmpDirectory()

Description

SetaPDF_Encryptor extends SetaPDF {

mixed setTmpDirectory ([string $tmpDirectory=null])

}

If you want to change the path for temporary files at runtime, you can use this method.

A writeable temporary path is only needed if you use Public Key Security.

Parameters

$tmpDirectory

A path for temporary files. If not or null is passed the default fallback directory
SetaPDF/Encryptor/_tmp/ is used.

Return Values

True is everything works as expected or an SetaPDF_Error object if an error occurs.

Version

Available as of version 1.6

© Setasign 2013 Page 31 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::createNewTmpFileName()

Description

SetaPDF_Encryptor extends SetaPDF {

string createNewTmpFileName (void)

}

This method is a kind of helper method which is used to create unique filenames in the temporary directory.

You can use this method to create temporary files which will be included in the cleanTmpDirectory routine
of the SetaPDF-Encryptor API.

Return value

An absoulte unique filename/path

Version

Available as of version 1.6

© Setasign 2013 Page 32 of 40

https://www.setasign.de/support/manuals/setapdf-signer/setapdf-signer/cleantmpdirectory/
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::cleanTmpDirectory()

Description

SetaPDF_Encryptor extends SetaPDF {

boolean cleanTmpDirectory (void)

}

This methods deletes olded files in the temporary directory.

If the API causes an error it could be that temporary files will remain in the given temporary directory.

In the PHP 5 version this method is called automatically by the __destruct()-method.

In PHP 4 you can call it your own or register it as a shutdown function:

register_shutdown_function(array(&$encryptorInstance,'cleanTmpDirectory'));

The method makes use of the glob()-function. If this function is disabled cause of any security reason you
can define your own function by setting it in the SetaPDF::$globFunctionName property. An example of a
replacement function can be found in the user contributed notes on php.net

By default temporary files which are older than 60 seconds will be deleted. To adjust this value, change the
SetaPDF::$tmpFilesLifetime property.

Temporary files are only needed if you use the Public Key Security feature.

Return value

True if files were deleted. False if no file was deleted.

Version

Available as of version 1.6

© Setasign 2013 Page 33 of 40

http://www.php.net/glob
http://www.php.net/manual/en/function.glob.php#71083
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::setUseCache()

As of version 1.5 a new global caching function exists and the API own functionality will be removed in
coming version.

Description

SetaPDF_Encryptor extends SetaPDF {

void setUseCache ([boolean $usecache=false])

}

(DEPRECATED) Is used to change the status of the caching function. Please note that the constant
SetaPDF_ENCRYPTOR_CACHEPATH already needs to have been defined and contain a valid path to
your file system, to which the Apache / PHP process can write and read. For more information on the
caching function, please turn to the section on caching.

Parameters

$usecache

True or false â€“ turns the API caching function on (true) or off (false).

© Setasign 2013 Page 34 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::encrypt()

Description

SetaPDF_Encryptor extends SetaPDF {

mixed enrcypt (string $targetfile[, string $owner_pass|$pks=null[,

string $user_pass=''[, $permissions=array()[, integer

$encryption_strength=SETAPDF_ENC_RC4_40[, $dest='F'[,

$stream=false]]]]]])

}

This method is the main component of the API. It is used to encrypt the documents.

Parameters

$targetfile

A valid path and filename for the new document if the dest-parameter is set to "F". Otherwise the
name of the new PDF document.

$owner_pass|$pks

This parameter can be used in 2 ways:

1. Standard Security

The owner password. If you want to use standard security.

If it is set to NULL, the API will, for security reasons, generate a random password.

The password string has to be in PDFDocEncoding (which is simliar to cp1252) if
$encryption_strength is NOT set to SETAPDF_ENC_AES_256. If $encryption_strength is set to
SETAPDF_ENC_AES_256 the password string has to be in UTF-8.

2. Public Key Security

An array holding recipient certificates and individual permissions.

Each entry defines a set of certificates and individual persmissions:

certs: Either a lone X.509 certificate, or an array of X.509 certificates. (Details)

permissions (optional): an array identical to the $permissions-parameter. If not set the
permissions of the $permissions-parameter are set.

owner (optional): A boolean value. When set to true permits the change of encryption and enables
all other permissions for the recipients in certs.

Public Key Security is only available if the $encryption_strength-parameter is set to

© Setasign 2013 Page 35 of 40

http://www.php.net/manual/en/openssl.certparams.php
http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SETAPDF_ENC_RC4_128, SETAPDF_ENC_AES_128 or SETAPDF_ENC_AES_256

$user_pass

The user password. If a user password is set, it will be asked for when opening the processed
document in a viewer.

The password string has to be in PDFDocEncoding (which is simliar to cp1252) if
$encryption_strength is NOT set to SETAPDF_ENC_AES_256. If $encryption_strength is set to
SETAPDF_ENC_AES_256 the password string has to be in UTF-8.

Has no meaning when using Public Key Security.

$permissions

This parameter defines the user privileges for a user opening or viewing the document. Each
privilege has to be entered in the permissions array. Depending on the encryption strength, the
following entries are possible:

Privileges for 40bit encryption (standard):

print

The user is allowed to print the document. If the key length is 128bit or greater the print quality is
defined by the "degraded-print" flag.

modify

The user is allowed to modify the contents of the document by operations other than those
controlled by "annot-forms", "fill-in" (>=128bit) and "assemble" (>=128bit).

copy

40bit: The user is allowed to copy or otherwise extract text and graphics from the document,
including extracting text and graphics (in support of accessibility to disabled users or for other
purposes).

128bit: The user is allowed to copy or otherwise extract text and graphics from the document by
operations other than those controlled by "screenreaders".

annot-forms

The user is allowed to add or modify text annotations, fill in interactive form fields, and, if "modify"
is also set, create or modify interactive form fields (including signature fields).

More privileges for 128/256bit encryption:

fill-in

The user is allowed to fill in existing interactive form fields (including signature fields), even if

© Setasign 2013 Page 36 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

"annot-forms" is not set.

screenreaders

The user is allowed to extract text and graphics (in support of accessibility to disabled users or for
other purposes).

assemble

The user is allowed to assemble the document (insert, rotate, or delete pages and create
bookmarks or thumbnail images), even if "modify" is not set.

degraded-print

The user is allowed to print the document in a form that is equivalent to a true copy of the original
PDF. When this is not set (and "print" is set), printing is limited to a lesser quality (Print As Image).

$encryption_strength

Expects an integer or predefined constant.

SETAPDF_ENC_RC4_40 = 0 - The document will be encrypted with the standard algorithm with
a 40-bit encryption key.

SETAPDF_ENC_RC4_128 = 1 - The document will be encrypted with the standard algorithm with
a 128-bit encryption key.

SETAPDF_ENC_AES_128 = 2 - The document will be encrypted with the AES algorithm with a
128-bit encryption key.

SETAPDF_ENC_AES_256 = 3 - The document will be encrypted with the AES algorithm with a
256-bit encryption key. (Available since PDF 1.7 / Acrobat >=9)

$dest

Defines how the encrypted document is handled:

➧ "F" saves the file to the file system
➧ "D" the file will be send to the client with a download dialogue
➧ "I" the file will be displayed in the client's browser window.

$stream

This parameter is only used if dest is set to "D" or "I". If it is set to true, the document will be sent
immediately as soon as the first content bytes are available. In this case the length-header will not
be sent. If this parameter is set to false, the whole document is held in memory until it is
completely assembled.

© Setasign 2013 Page 37 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

The streaming facility is very effective, because the client does not become aware of any script
processing time.

Return Values

True - if everything works as expected - an SetaPDF_Error object if an error occurs.

Version

Public Key Security is available since version 1.6

© Setasign 2013 Page 38 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

SetaPDF_Encryptor::updateCache()

Description

SetaPDF_Encryptor extends SetaPDF {

mixed updateCache (void)

}

(DEPRECATED) This method creates a cache file for the PDF file sent to the factory method. It can be
used to create the cache file beforehand or to update the cached version manually.

The call of this method presupposes that setUseCache(true) is activated prior to this method call.

Return Values

True - if everything works as expected - an SetaPDF_Error object if an error occurs.

© Setasign 2013 Page 39 of 40

http://www.setasign.de

SetaPDF-Encryptor API - Manual and Reference

Caching (DEPRECATED)

As of version 1.5 a new global caching function exists and the API own functionality will be removed in
coming version.

The SetaPDF-Encryptor API provides a special caching function that saves a serialized version of the
parser object in your file system. Depending on the size of the document, this can save considerable
processing time.

Documentsize <> Filesize

Unfortunately it is not possible to predefine the cached data of a PDF document in its relation to its
document size. The cache function only provides an intermediate storage for information, but not for
embedded images or fonts.

Because of this, it is possible that the cache function will not be able to speed the processing of a 3 MB
PDF document which includes some very large images. If the 3 MB document contains many pages, but
only of text, the caching function will definitely reduce the processing time.

Usage

You can use the caching function simply by defining a writeable path in the constant
SetaPDF_ENCRYPTOR_CACHEPATH and activating setUseCache() afterwards. If such as path has not
been defined, the caching function is ignored.

© Setasign 2013 Page 40 of 40

http://www.setasign.de

	Introduction
	System Requirements
	Installation
	Ioncube
	Zend

	Standard and Certificate-based encryption
	Examples of Use
	Constants / Configuration
	Caching
	SetaPDF
	SetaPDF::isError()

	SetaPDF_Error
	SetaPDF_Parser
	SetaPDF_Parser::cacheDir()
	SetaPDF_Parser::cacheFlags()
	SetaPDF_Parser::cacheMkdirMode()
	SetaPDF_Parser::cacheNoOfObjectsPerInstance()
	SetaPDF_Parser::cacheHashFunction()

	SetaPDF_Encryptor
	SetaPDF_Encryptor::factory()
	SetaPDF_Encryptor::setTmpDirectory()
	SetaPDF_Encryptor::createNewTmpFileName()
	SetaPDF_Encryptor::cleanTmpDirectory()
	SetaPDF_Encryptor::setUseCache()
	SetaPDF_Encryptor::encrypt()
	SetaPDF_Encryptor::updateCache()

	Caching (DEPRECATED)

