

 SetaPDF-Core Manual

 	

 Manuals

	

 SetaPDF-Core

	

 4. Readers and Writers

 Index

	Installation
	Getting Started
	Memory Usage
	Readers and Writers	Readers	Stream
	File
	String
	Max File Reader and Handler

	Writers	Echo
	File
	HTTP
	HTTP Stream
	Stream
	TempStream
	String
	Variable
	Temporary File
	Chaining Writers

	Reading and Writing From/To the Same File
	Stream Wrappers	Amazon S3

	Create a New Writer

	The Document Class
	Metadata
	Pages
	Canvas
	Page Layout and Mode
	Viewer Preferences
	Document Outline
	Page Labels
	Actions
	Destinations
	Annotations
	Embedded File Streams
	Colors and Color Spaces
	Page Formats and Boundaries
	Standard and Public Key Encryption
	Fonts and Encodings
	Corrupted Documents
	Reader Enabled Documents
	Refactor Old SetaPDF Code
	API Reference

 Memory Usage
 Create a New Writer

 Readers and Writers
 Working with reader and writer classes

 Table of Contents

 	 Readers
 	 Stream

	 File

	 String

	 Max File Reader and Handler

	 Writers
 	 Echo

	 File

	 HTTP

	 HTTP Stream

	 Stream

	 TempStream

	 String

	 Variable

	 Temporary File

	 Chaining Writers

	 Reading and Writing From/To the Same File

	 Stream Wrappers
 	 Amazon S3

 While in SetaPDF version 1 reading and writing was only possible via local pathes this limitation has been completely removed from version 2 by introducing separate reader and writer classes.

 Readers

 SetaPDF 2 offers a flexible way for PDF data sources, which are represented as reader classes.

 Stream

 The SetaPDF_Core_Reader_Stream allows to read in a PDF document directly from a seekable stream context, which uses random byte access. The entire document is never read into memory at once, allowing to work with PDF documents of virtually any size.

 	copy

 PHP

 $stream = fopen('data:text/plain,' . urlencode($pdfContent), 'rb');
$reader = new \SetaPDF_Core_Reader_Stream($stream);

 File

 The file reader extends the stream reader and allows you to pass a file path to its constructor. The file handle is opened and closed internally. Also this reader is serializable.

 	copy

 PHP

 $reader = new \SetaPDF_Core_Reader_File('path/to/a/pdf/document.pdf');

 String

 Sometimes the data source is not located in the filesystem but in a variable. For this situation another reader is available as well: SetaPDF_Core_Reader_String

 	copy

 PHP

 $reader = new \SetaPDF_Core_Reader_String($pdfString);

 Max File Reader and Handler

 In specific situations it is needed to open several hundreds or thousands of files in a single process. Depending on the operation system these processes could hit the operation system limit of allowed open file handles/descriptors. To overcome this limitation we build a reader class that utilizes a handler class which opens and closes the handles by a given maximum number.
A reader instance can be created this way:

 	copy

 PHP

 $maxOpenFiles = 100;
$handler = new \SetaPDF_Core_Reader_MaxFileHandler($maxOpenFiles);
$reader = $handler->createReader('path/to/document.pdf');

 Writers

 To allow as much flexibility as possible SetaPDF 2 does not output any content directly but makes use of writer classes. These PHP classes could be easily extended or derivated into own writers if needed.
The writer classes implements the SetaPDF_Core_Writer_WriterInterface.
The methods of a writer instance are invoked by the SetaPDF_Core_Document class when the resulting PDF document is saved. For more details, please see here.

 Echo

 The SetaPDF_Core_Writer_Echo class simply echos the PDF content without sending any header. It is recommend to use if the headers are set manually in your PHP script.

 File

 The SetaPDF_Core_Writer_File class should be used to save the resulting PDF to a local path.

 Description

public SetaPDF_Core_Writer_File::__construct (string $path
)
The constructor.

Parameters
	$path : string
	The path to the output file

 HTTP

 The SetaPDF_Core_Writer_Http class is used to send the resulting PDF document to the browser/client via standard HTTP headers after it is completely assembled. It allows to define if the document should be displayed inline or if a download should be forced:

 Description

public SetaPDF_Core_Writer_Http::__construct ([string $filename = 'document.pdf' [, boolean $inline = false]]
)
The constructor.

Parameters
	$filename : string
	The document filename in UTF-8 encoding

	$inline : boolean
	Defines if the document should be displayed inline or if a download should be forced

 HTTP Stream

 The SetaPDF_Core_Writer_HttpStream class will work simliar to the SetaPDF_Core_Writer_Http writer but will start sending the data without a Content-Length header. The resulting bytes will be sent as soon as they were available without assembling the whole resulting document in memory.
This writer saves memory and will immediately cause a download dialog or start the inline viewer at the client.

 Stream

 The SetaPDF_Core_Writer_Stream writer class forwards the result to a given stream handle. This writer is mostly used internally.

 TempStream

 The SetaPDF_Core_Writer_TempStream class combines an internal handle to php://temp and a string buffer. This combination results in best results in view to memory and CPU usage.

 	copy

 PHP

 $writer = new \SetaPDF_Core_Writer_TempStream();

// create a document instance and save it to the $writer instance
// ...

// and re-read from it
$reader = new \SetaPDF_Core_Reader_Stream($writer->getHandle());

 Such logic can e.g. be used in loops of several documents that get merged through the SetaPDF-Merger component to create intermediate results to save memory.
 It perfectly fits into environments using PSR-7 + PSR-17 implementations:

 	copy

 PHP

 $writer = new \SetaPDF_Core_Writer_TempStream();

$document = \SetaPDF_Core_Document::load(..., $writer);
$document->save()->finish();

/** @var \Psr\Http\Message\StreamFactoryInterface $factory **/
$stream = $factory->createStreamFromResource($writer->getHandle());

/** @var \Psr\Http\Message\ResponseInterface $response **/
$response = (
 $response
 ->withBody($stream)
 ->withHeader('Content-Type', 'application/pdf')
 ...
);

 String

 The SetaPDF_Core_Writer_String class will hold the assembled PDF document internally which can be accessed via the SetaPDF_Core_Writer_String::__toString() method or the SetaPDF_Core_Writer_String::getBuffer() method.

 Variable

 The SetaPDF_Core_Writer_Var class could be used to save the assembled PDF document in a string variable. The variable is simply passed by reference to the constructor.

 Description

public SetaPDF_Core_Writer_Var::__construct (string &$var
)
The constructor.

Parameters
	$var : string
	A reference to the variable to write to

 Temporary File

 The SetaPDF_Core_Writer_TempFile class will write to a temporary file. It acts as a kind of proxy to the File writer but will create and delete temporary files automatically. Temporary files will be deleted when the writer instance is destructed.
The class uses the path returned by sys_get_temp_dir() as its default folder for temporary files (as of revision 809). If you want to configure this individually or if you want to control if the temporary files should be deleted automatically or not, following static methods are available:
 getFilePrefix()
Get the file prefix for temporary files.
Description

public static SetaPDF_Core_Writer_TempFile::getFilePrefix (void
): string
Get the file prefix for temporary files.

getKeepFile()
Get whether files should be kept or deleted automatically when an instance is destructed.
Description

public static SetaPDF_Core_Writer_TempFile::getKeepFile (void
): bool
Get whether files should be kept or deleted automatically when an instance is destructed.

getTempDir()
Get the current temporary directory path.
Description

public static SetaPDF_Core_Writer_TempFile::getTempDir (void
): null|string
Get the current temporary directory path.

setFilePrefix()
Set the file prefix for temporary files.
Description

public static SetaPDF_Core_Writer_TempFile::setFilePrefix (string $filePrefix
): void
Set the file prefix for temporary files.

Parameters
	$filePrefix : string
	

setKeepFile()
Set whether files should be kept or deleted automatically when an instance is destructed.
Description

public static SetaPDF_Core_Writer_TempFile::setKeepFile (bool $keepFile
): void
Set whether files should be kept or deleted automatically when an instance is destructed.

Parameters
	$keepFile : bool
	

setTempDir()
Set the temporary directory path.
Description

public static SetaPDF_Core_Writer_TempFile::setTempDir (null|string $tempDir
): void
Set the temporary directory path.

Parameters
	$tempDir : null|string
	

Exceptions
Throws InvalidArgumentException

 Furthermore the class offers a static methods to create temporary files with a defined content or prepare a path for a temporary file:
 createTempFile()
Creates a temporary file and returns the temporary path to it.
Description

public static SetaPDF_Core_Writer_TempFile::createTempFile (string $content
): string
Creates a temporary file and returns the temporary path to it.

Parameters
	$content : string
	

createTempPath()
Creates a temporary path.
Description

public static SetaPDF_Core_Writer_TempFile::createTempPath ([null $tempDir = null [, null $filePrefix = null]]
): string
Creates a temporary path.

If a parameters is left, the static class method (getTempDir() or getFilePrefix()) will be
used to resolve the desired data.

Parameters
	$tempDir : null
	
	$filePrefix : null
	

Exceptions
Throws InvalidArgumentException

 Chaining Writers

 It is possible to chain several writer instances with the SetaPDF_Core_Writer_Chain class. This writer could be used e.g. if the same document should be written to disk while it should be send to the client as well:

 	copy

 PHP

 $writer = new SetaPDF_Core_Writer_Chain(array(
 new SetaPDF_Core_Writer_File('path/to/target.pdf'),
 new SetaPDF_Core_Writer_HttpStream('target.pdf', false)
));

 Reading and Writing From/To the Same File

 Sometimes it is needed to overwrite the original file after modifying it. Anyhow it is impossible to use the same local path for reading and writing at the same time. The document instance needs to read from the in-file while writing to the out-file in its save() method.
Additionally it is a bad practice, because nobody knows what happens to the process and an error could occur, which may destroy the out- and also the in-file.
So after all you should avoid writing to a file from which you are reading and use e.g. a temporary writer instance which copies the file over when the process is finished:

 	copy

 PHP

 try {
 $file = 'document.pdf';

 // create a reader
 $reader = new \SetaPDF_Core_Reader_File($file);
 // create a temporary file writer
 $tempWriter = new \SetaPDF_Core_Writer_TempFile();

 $document = \SetaPDF_Core_Document::load($reader, $tempWriter);

 // modify the document...

 // save it
 $document->save()->finish();
 // copy it over
 copy($tempWriter->getPath(), $file);
} catch (\Exception $e) {
 // something went wrong... but our main document, is safe!
}

 Stream Wrappers

 If the source or target is accessible through individual stream wrappers which are registered via stream_wrapper_register() the stream needs to be seekable for reading.

 Amazon S3

 The AWS SDK for PHP provides an official Amazon S3 PHP stream wrapper. To use this wrapper it is needed to force allow seeking.
This can be done globally by using the stream_context_set_default() method:

 	copy

 PHP

 // register the stream wrapper
$s3 = new S3Client(...);
$s3->registerStreamWrapper();

// make all files for the s3 protocol seekable
stream_context_set_default(['s3' => ['seekable' => true]]);

// now the file can be opened by the File reader
$reader = new \SetaPDF_Core_Reader_File("s3://{$bucket}/{$key}");

 If you don't want to make all s3-streams seekable you have to open the streams manually and make use of a stream context:

 	copy

 PHP

 // register the stream wrapper
$s3 = new S3Client(...);
$s3->registerStreamWrapper();

// create a stream context
$context = stream_context_create(['s3' => ['seekable' => true]]);
// and open the stream
$stream = fopen("s3://{$bucket}/{$key}", 'r', false, $context);

// then we have to use the Stream reader
$reader = new \SetaPDF_Core_Reader_Stream($stream);

// ...

// finally close the stream
fclose($stream);

 Memory Usage
 Create a New Writer

 © 2024 Setasign GmbH & Co. KG
 · Contact / Imprint
 · Data Privacy Statement (German)

