

 SetaPDF-FormFiller Manual

 	

 Manuals

	

 SetaPDF-FormFiller

	

 6. Unicode Usage

 Index

	Getting Started
	The Main Class
	Accessing Fields
	Field Types
	Flatten or Delete Fields
	Unicode Usage	Introduction
	Using a Custom Font
	Render Appearance by Reader

	Individual Appearance
	Reader Enabled Documents
	XFA Forms
	Migrating
	API Reference

 Flatten or Delete Fields
 Individual Appearance

 Unicode Usage
 Fill forms with multilingual text and encoding

 Table of Contents

 	 Introduction

	 Using a Custom Font

	 Render Appearance by Reader

 Introduction

 While all SetaPDF components accept UTF-8 values as their standard encoding the glyphs have to be converted to a font specific encoding to render them.
By default the SetaPDF-FormFiller component uses the pre-defined font in the PDF form to render a field appearance. Depending on the language it may be possible that a pre-defined font is not able to display a specific glyph. This manual will show possible workarounds for these situations.

 Using a Custom Font

 The best an reliable way to add support for required languages is to use a TrueType font program which covers all needed glyphs.
A font is represented by a font object that could be created in several ways. In any way we suggest to use a subset font either TrueType or Type0 to be as flexible as possible:

 	copy

 PHP

 // allows you to use 255 different characters
$font = new \SetaPDF_Core_Font_TrueType_Subset(
 $document,
 'DejaVuSansCondensed-Oblique.ttf'
);

// or

// allows you to use up 65000 different characters
$font = new \SetaPDF_Core_Font_Type0_Subset(
 $document,
 'DejaVuSansCondensed-Oblique.ttf'
);

$field = $fields->get('Name');
$field->setAppearanceFont($font);
$field->setValue('Mr. Úmśęnłasdí');

 An online-demo is available here.
For sure a font instance can and should be shared by different fields. Do not create new instances for each field.
If the form uses the same name for several field instances and you will call the setValue() method only of one of them, you have to set the appearance font in advance to all other field instances.
Please notice that all font instance currently do not support scripts and languages which need pre-processing such as glyph substitution or glyph ordering (such as Arabic, Hebrew,...)
If you need to use different font styles and you do not know which style is used in which form field, you can access the original font prior setting the new one:

 	copy

 PHP

 $font = $field->getAppearanceFont();
// all fonts which are created out of a PDF document are of the instance SetaPDF_Core_Font
if ($font instanceof SetaPDF_Core_Font) {
 $isBold = $font->isBold();
 $isItalic = $font->isItalic();
 $isMonospace = $font->isMonospace();
 $fontName = $font->getFontName();
}

 Render Appearance by Reader

 A simple solution to support unicode values is to instruct the Reader application to re-render the form field appearances at opening time. This flag could be simply set with the setNeedAppearances() method:

 Description

public SetaPDF_FormFiller::setNeedAppearances ([boolean $needAppearances = true]
): void
Set the NeedAppearances flag.

This flag indicates the viewer to re-render the form field appearances.

Parameters
	$needAppearances : boolean
	The NeedAppearances flag status

 Whether this flag is set, can be checked with the isNeedAppearancesSet() method.
Sadly not all reader applications support this flag! So using a font subset would be a more reliable solution.

 Flatten or Delete Fields
 Individual Appearance

 © 2024 Setasign GmbH & Co. KG
 · Contact / Imprint
 · Data Privacy Statement (German)

