

 SetaPDF-Signer Manual

 	

 Manuals

	

 SetaPDF-Signer

	

 2. The Main Class

 Index

	Getting Started
	The Main Class	Introduction
	Get an Instance	Encrypted Documents

	Configuring the Instance	Setting the Signature Field Name
	Configure the Reserved Space for the Final Signature
	Add a Timestamp Module

	The sign() Method	Example

	The timestamp() Method
	Signature Properties
	Certification

	Create a Signature Field
	Signature Appearance Modules
	Signature Modules
	Timestamp Modules
	Asynchronous Signature Workflow
	Sign Several Times
	Signing PDF Forms
	Long-Term Validation (LTV)
	Trust Settings
	Migrating
	LTV (pre-release)
	API Reference

 Getting Started
 Signature Properties

 The Main Class

 Table of Contents

 	 Introduction

	 Get an Instance
 	 Encrypted Documents

	 Configuring the Instance
 	 Setting the Signature Field Name

	 Configure the Reserved Space for the Final Signature

	 Add a Timestamp Module

	 The sign() Method
 	 Example

	 The timestamp() Method

 Introduction

 As any other SetaPDF component the Signer is represented by a main class: The SetaPDF_Signer class.
It is the midsection of the signature workflow. It accepts several properties, creates the signature form field automatically, collects e.g. timestamp modules and will delegate the signature process to a signature module.

 Get an Instance

 A class instance can be simply created by passing a document instance, that will get digital signed, to its constructor. The document instance should have a writer attached to it. At least this is required before the sign() or timestamp() method is called.
Optionally a callback can be passed, that will be called if an authentication to the documents security handler is needed:
 __construct()
The constructor.
Description

public SetaPDF_Signer::__construct (SetaPDF_Core_Document $document [, callback|null $secHandlerCallback = null]
)
The constructor.

If the passed document is protected by a security handler it is possible to pass a callback as second parameter
that will be called if an authentication is needed.

Parameters
	$document : SetaPDF_Core_Document
	The document instance

	$secHandlerCallback : callback|null
	A callback which should auth on a security handler (if needed).
The callback will be called with two parameters: The first parameter
will be the
security handler and
the second parameter is the current
document instance. It should return true
or false whether the authentication was successful or not.

Exceptions
Throws SetaPDF_Core_SecHandler_Exception

 Encrypted Documents

 If the document you want to sign is encrypted by a security handler which requires a password or a certificate to get the permission to sign the document, it is necessary to pass a callback to the constructor which is called everytime the component needs to authenticate against the security handler.

 	copy

 PHP

 $signer = new SetaPDF_Signer($document, function(SetaPDF_Core_SecHandler_SecHandlerInterface $secHandler) {
 $secHandler->auth('the password');
});

 It is also needed to pass this callback if the document is encrypted in the same process because the SetaPDF-Signer component will need to work with temporary instances which need a re-authentication.

 Configuring the Instance

 The Signer component allows you to configure the signature process through individual setter and getter methods.
Signature properties like the "time of signing", "contact information"or a "reason" can be set or get as described here.
The Signer component also allows you to create certified documents. This is done by defining a certification level as described here.

 Setting the Signature Field Name

 A digital signature requires a signature field. That may be a hidden or visible signature field. By default the Signer component will use a signature field that is named:

 public const string SetaPDF_Signer_SignatureField::DEFAULT_FIELD_NAME = 'Signature'
The default signature field name

 An individual name could be passed to the setSignatureFieldName() method. It has to be passed in UTF-8 encoding.
By default the component will try to use an existing field with that name. If no field with this name is found a hidden signature field with this name will be created. If the field has already a signature value attached a SetaPDF_Signer_Exception is thrown.
If you want to add a unique signature field your own you can create it manually and pass its name afterwards to the signer component:

 	copy

 PHP

 $field = $signer->addSignatureField('My signature field name', 1, SetaPDF_Signer_SignatureField::POSITION_LEFT_BOTTOM, ['x'=>30, 'y'=>30], 100, 40);
$signer->setSignatureFieldName($field->getQualifiedName());

 Configure the Reserved Space for the Final Signature

 Because the signature will be embedded in the PDF document it is needed to reserve an appropriate space in the PDF document into which the final signature will be placed afterwards.
Depending on the content of the final signature this space may be to small. In that case the component will restart the signature process but will reserve sufficient space. So the signature process will be done two times in this situation!
The component will reserve 15000 bytes by default (before revision 1649 this was set to 5000 bytes).
You can control this value with the setSignatureContentLength() method. The whole behavior could be controlled with the setAllowSignatureContentLengthChange() method.
If a timestamp module is used this behavior is automatically disabled because a timestamp request could cost you money. You have to adjust the reserved space your own by the setSignatureContentLength() method.

 Add a Timestamp Module

 A timestamp module has to be initiated seperately and has to implement the SetaPDF_Signer_Timestamp_Module_ModuleInterface interface.
The module shall be passed to the setTimestampModule() method before starting the signature process with the SetaPDF_Signer::sign() or timestamp() method.
A detailed description about timestamp modules is available here.

 The sign() Method

 A signature process will be finalized by calling the sign() method with a signature module.
Internally the method will create a temporary version of the document that will be passed to the signature module. The temporary version will be prepared with a reserved space as described earlier and a signature appearance, if a signature appearance module is used.
The signature creation process is done by the individual signature modules. They return the final signature container. If a timestamp module is in use, the timestamp signature will be added to this container as well. The final container will be embedded into the final PDF document.
The resulting document will be written to the writer instance that was added to the initial document instance.
The sign() method will save and finish the initial document, so that its instance cannot be used further!

 Example

 A very simple signature process will look like:

 	
	

 PHP

 	copy

 <?php
require_once('library/SetaPDF/Autoload.php');

// create a writer
$writer = new \SetaPDF_Core_Writer_Http('simple.pdf', true);
// create a new document instance
$document = \SetaPDF_Core_Document::loadByFilename(
 'files/pdfs/tektown/Laboratory-Report.pdf', $writer
);

// create a signer instance
$signer = new \SetaPDF_Signer($document);

// set some signature properties
$signer->setReason('Testing');
$signer->setLocation('SetaPDF-Signer Manual');

// create a signature module
$module = new \SetaPDF_Signer_Signature_Module_Cms();
// load the certificate
$certificate = 'file://files/certificates/setapdf-no-pw.pem';
$module->setCertificate($certificate);
$module->setPrivateKey(array($certificate, '' /* no password */));

// sign the document and send the final document to the initial writer
$signer->sign($module);

 	 Code
	 Run

 The timestamp() Method

 Beside a signature process the component allows you to add a document level timestamp (PDF 2.0). Simliar to the sign() call the document will be finalized by calling the timestamp() method but it will add a document level timestamp.
Internally the method will also create a temporary version of the document. The temporary version will be prepared with a reserved space as described earlier and a signature appearance, if a signature appearance module is used.
The calculated hash will be send to a trusted time stamp authority which shall return a valid TimeStampToken which becomes the content of the the signature itself. The final container will be embedded into the final PDF document.
The resulting document will be written to the writer instance that was added to the initial document instance.
The timestamp() method will save and finish the initial document, so that its instance cannot be used further!

 Getting Started
 Signature Properties

 © 2024 Setasign GmbH & Co. KG
 · Contact / Imprint
 · Data Privacy Statement (German)

